Chapitre 4 : Nombres complexes

Nombres complexes et plan complexe

On peut construire un sur-ensemble de R, noté C, dont les éléments sont appelés nombres complexes (ou imaginaires), possédant les propriétés suivantes :

- ▶ C est muni d'une addition, d'une soustraction, d'une multiplication et d'une division qui prolongent celles de \mathbb{R} (mêmes règles de calcul).
- ▶ \mathbb{C} contient un élément i tel que $i^2 = -1$.
- ► Tout nombre complexe s'écrit de façon unique sous la forme

$$z = a + ib$$

où a et b sont deux réels. Cette écriture s'appelle écriture sous forme algébrique (ou cartésienne).

 $\forall z \in \mathbb{C}, \forall z' \in \mathbb{C}$:

$$(z \times z' = 0) \iff (z = 0 \text{ ou } z' = 0).$$

Remarque.

L'unicité de l'écriture signifie que

$$(a+ib=a'+ib') \iff (a=a' \text{ et } b=b').$$

Exemples 1

Définition 1

1.
$$z = 3 + 2i$$
, $z = 1 - i = 1 + (-1)i$, $z = 3 = 3 + 0i$, $z = -5i = 0 + (-5)i$.

2.
$$z = 2i(1-3i) = 2i - 6 \times \underbrace{i^2}_{=-1} = 6 + 2i$$
.

On a trois nouvelles identités remarquables :

Proposition 1

Pour tous réels a, b:

1
$$(a+ib)^2 - a^2 + b^2 + 2ab^2$$

1.
$$(a+ib)^2 = a^2 - b^2 + 2abi$$
. **2.** $(a-ib)^2 = a^2 - b^2 - 2abi$. **3.** $(a+ib)(a-ib) = a^2 + b^2$.

3.
$$(a+ib)(a-ib) = a^2 + b^2$$

Démonstration

•
$$(a+ib)^2 = a^2 + 2 \times a \times ib + (ib)^2 = a^2 + 2abi + b^2i^2 = a^2 - b^2 + 2abi$$
.

•
$$(a-ib)^2 = a^2 - 2 \times a \times ib + (ib)^2 = a^2 - 2abi + b^2i^2 = a^2 - b^2 - 2abi$$
.

•
$$(a+ib)(a-ib) = a^2 - (ib)^2 = a^2 - i^2b^2 = a^2 + b^2$$
.

On écrit $z = \frac{3-i}{2-4i}$ sous forme algébrique. Pour cela, on multiplie le numérateur et le dénominateur par le conjugué du dénominateur et on utilise la 3^e identité remarquable :

$$\frac{3-i}{2-4i} = \frac{(3-i)\left(2+4i\right)}{(2-4i)\left(2+4i\right)} = \frac{6+12i-2i-4\times i^2}{2^2+4^2} = \frac{6+12i-2i+4}{20} = \frac{10+10i}{20} = \frac{1}{2} + \frac{1}{2}i.$$

Soit z = a + ib, avec $a \in \mathbb{R}$, $b \in \mathbb{R}$.

- Le nombre *a* est appelé partie réelle de z et noté Re(z).
- ▶ Le nombre *b* est appelé partie imaginaire de z et noté Im(z).

Définition

Soient $a \in \mathbb{R}$, $b \in \mathbb{R}$. Le conjugué de z =a + ib est $\overline{z} = a - ib$.

Les points M d'affixe z et M' d'affixe \overline{z} sont symétriques par rapport à l'axe des abscisses.

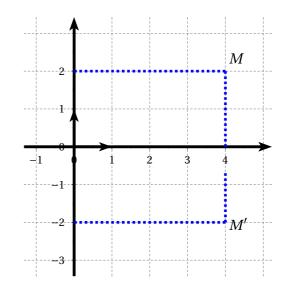
Déf.

Un nombre complexe est dit imaginaire pur si sa partie réelle est nulle, c'est-à-dire s'il est de la forme z = ib, avec $b \in \mathbb{R}$.

Le plan est muni d'un repère orthonormé $(O, \overrightarrow{u}, \overrightarrow{v})$. À tout nombre complexe z =a + ib, on associe le point M de coordonnées (a; b). On dit alors que M a pour affixe

Exemple 3

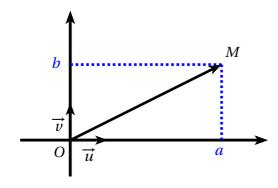
On place le point M d'affixe z = 4 + 2i, et le point M' d'affixe $\overline{z} = 4 - 2i$.



Définition 4

 $z_M = a + ib$.

On identifie ainsi l'ensemble des nombres complexes aux points du plan (qualifié dès lors de « plan complexe »).



La 3^e identité remarquable se réécrit :

Proposition 2

Pour tout nombre complexe z = a + ib:

$$z \times \overline{z} = a^2 + b^2.$$

Proposition 3

Pour tous complexes z, z', pour tout entier $n \ge 1$:

1.
$$\overline{z+z'}=\overline{z}+\overline{z'}$$
.

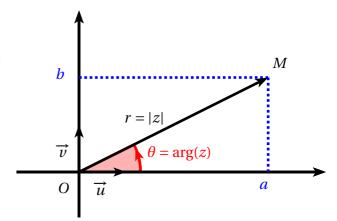
$$2. \ \overline{z \times z'} = \overline{z} \times \overline{z'}.$$

$$3. \ \overline{z^n} = \left(\overline{z}\right)^n.$$

Définition 6

Soit z = a + ib un nombre complexe, et soit M le point du plan complexe d'affixe z.

- Le module de z, noté |z|, est définie par |z| = OM.
- ► Si $z \neq 0$, l'argument de z, noté $\arg(z)$, est défini par $\arg(z) = \left(\overrightarrow{u}, \overrightarrow{OM}\right)$.



Remarque.

L'argument de z est défini « à $2k\pi$ près ». L'unique valeur dans l'intervalle $]-\pi;\pi]$ est appelée valeur principale de l'argument.

Proposition 4

Soit z = a + ib. On pose r = |z| et $\theta = \arg(z)$. Alors:

1.
$$r = \sqrt{a^2 + b^2}$$
.

$$2. \cos \theta = \frac{a}{r}.$$

3.
$$\sin \theta = \frac{b}{r}$$
.

Remarques.

- La formule $r = \sqrt{a^2 + b^2}$ est la formule du cours de 2^{de} pour la longueur d'un segment (ou, si l'on veut, une conséquence du théorème de Pythagore). Les formules $\cos\theta = \frac{a}{r}$ et $\sin\theta = \frac{b}{r}$ découlent directement de la définition du cos et du sin d'un nombre réel.
- D'après la proposition 2, $z \times \overline{z} = a^2 + b^2 = |z|^2$.
- Si a = a + 0i est un nombre réel, son module est $|a| = \sqrt{a^2 + 0^2} = \sqrt{a^2}$. En se souvenant que $\sqrt{a^2}$ est la valeur absolue de a, on obtient :

 $module \rightarrow |a| = |a| \leftarrow valeur absolue.$

Heureusement, les notations sont cohérentes!

Exemple 4

On note r le module et θ l'argument principal de 2-2i.

•
$$r = \sqrt{2^2 + (-2)^2} = \sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2}$$
.

$$\cos \theta = \frac{a}{r} = \frac{2}{2\sqrt{2}} = \frac{2 \times \sqrt{2}}{2\sqrt{2} \times \sqrt{2}} = \frac{2\sqrt{2}}{4} = \frac{\sqrt{2}}{2}$$

$$\sin \theta = \frac{b}{r} = \frac{-2}{2\sqrt{2}}$$

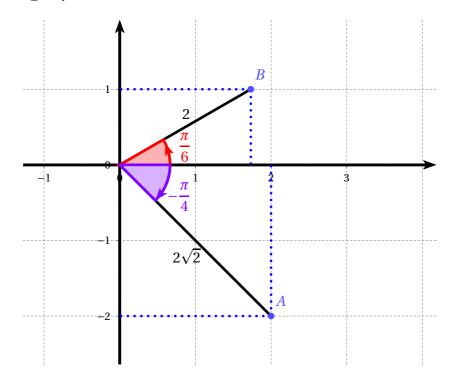
$$= -\frac{\pi}{4}$$

On note r le module et θ l'argument principal de $\sqrt{3}$ + i.

•
$$r = \sqrt{\sqrt{3}^2 + 1^2} = \sqrt{4} = 2$$
.

$$\cos \theta = \frac{a}{r} = \frac{\sqrt{3}}{2} \\
\sin \theta = \frac{b}{r} = \frac{1}{2}$$

$$\Rightarrow \theta = \frac{\pi}{6}$$



On place dans le plan complexe les points A et B d'affixes $z_A = 2 - 2i$, $z_B = \sqrt{3} + i$. Pour placer le point B, on trace un cercle de centre O de rayon 2 et on se place à l'ordonnée 1, côté droit du repère.

L'affixe d'un vecteur \overrightarrow{AB} est $z_{\overrightarrow{AB}} = z_B - z_A$.

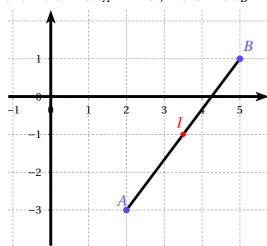
Proposition 5

- 1. L'affixe du milieu I d'un segment [AB] est $z_I = \frac{z_A + z_B}{2}$.
- **2.** La longueur du segment [AB] est $AB = |z_B z_A|$.
- 3. Deux vecteurs sont égaux si, et seulement

s'ils ont la même affixe.

- **4.** Si $k \in \mathbb{R}$ et si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs :
 - $z_{\overrightarrow{u}+\overrightarrow{v}} = z_{\overrightarrow{u}} + z_{\overrightarrow{v}}$.
 - $z_{k \cdot \overrightarrow{u}} = k \times z_{\overrightarrow{u}}$.

Soient *A* d'affixe $z_A = 2 - 3i$, *B* d'affixe $z_B = 5 + i$. • \overrightarrow{AB} a pour affixe



$$z_B - z_A = (5+i) - (2-3i) = 5+i-2+3i = 3+4i.$$

Le milieu I du segment [AB] a pour affixe

$$z_I = \frac{z_A + z_B}{2} = \frac{2 - 3i + 5 + i}{2} = \frac{7}{2} - i.$$

La longueur du segment [AB] est

$$AB = |z_B - z_A| = |3 + 4i| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5.$$

Remarque. Il y a bien sûr un lien avec les formules du cours de 2^{de} :

$$\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$$

$$I\left(\frac{x_A+x_B}{2};\frac{y_A+y_B}{2}\right)$$

$$\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix} \qquad I \left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2} \right) \qquad AB = \sqrt{(x_B - x_A)^2 + \left(y_B - y_A \right)^2}.$$

Proposition 6 (inégalité triangulaire)

Pour tous complexes z, z':

$$\left|z+z'\right| \le |z| + \left|z'\right|.$$

Démonstration

z + z'. On a donc

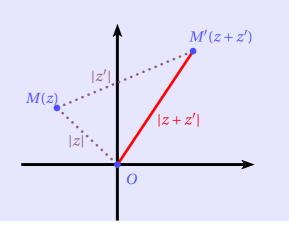
$$|z'| = |(z+z')-z| = MM'.$$

On a également |z| = |z-0| = OM et |z+z'| =|(z+z')-0|=OM', donc l'inégalité triangulaire se réécrit

$$OM' \leq OM + MM'$$
.

Cette inégalité est bien sûr vraie, car le chemin le plus court pour aller de O à M' est la ligne de droite : sur la figure ci-contre la longueur du chemin rouge (trait plein) est infé-

Soit M le point d'affixe z, M' le point d'affixe rieure à la longueur du chemin violet (pointillés).



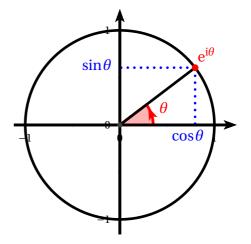
II. Écriture sous forme exponentielle

▶ Pour tout $\theta \in \mathbb{R}$, on pose

$$e^{i\theta} = \cos\theta + i\sin\theta$$
.

Le point M d'affixe $z = e^{i\theta}$ est le point du cercle trigonométrique tel que $(\overrightarrow{u}, \overrightarrow{OM}) = \theta.$

U désigne l'ensemble des nombres complexes de module 1, donc l'ensemble des $e^{i\theta}$, avec $\theta \in \mathbb{R}$.



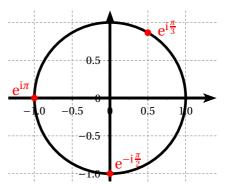
Exemples 7

Définition 8

1.
$$e^{i\frac{\pi}{3}} = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$
.

2.
$$e^{i\pi} = \cos \pi + i \sin \pi = -1 + i \times 0 = -1$$

2.
$$e^{i\pi} = \cos \pi + i \sin \pi = -1 + i \times 0 = -1$$
.
3. $e^{-i\frac{\pi}{2}} = \cos\left(-\frac{\pi}{2}\right) + i \sin\left(-\frac{\pi}{2}\right) = 0 + i \times (-1) = -i$.



Proposition 7

Soient θ_1 , θ_2 deux réels. On a l'équivalence :

$$\left(\mathrm{e}^{\mathrm{i}\theta_1}=\mathrm{e}^{\mathrm{i}\theta_2}\right) \Longleftrightarrow \left(\exists k \in \mathbb{Z},\; \theta_2=\theta_1+2k\pi\right).$$

Proposition 8

1. Pour tous réels θ_1 , θ_2 : $e^{i\theta_1} \times e^{i\theta_2} = e^{i(\theta_1 + \theta_2)}$.

2. Pour tout réel θ , pour tout entier $n \ge 1 : (e^{i\theta})^n = e^{in\theta}$.

Démonstration

On démontre le point 1. On développe :

$$\begin{split} e^{i\theta_1} \times e^{i\theta_2} &= (\cos\theta_1 + i\sin\theta_1) \left(\cos\theta_2 + i\sin\theta_2\right) \\ &= \cos\theta_1 \cos\theta_2 + i\cos\theta_1 \sin\theta_2 + i\sin\theta_1 \cos\theta_2 - \sin\theta_1 \sin\theta_2 \\ &= (\cos\theta_1 \cos\theta_2 - \sin\theta_1 \sin\theta_2) + i(\cos\theta_1 \sin\theta_2 + \sin\theta_1 \cos\theta_2) \,. \end{split}$$

Donc d'après les formules d'addition :

$$e^{i\theta_1} \times e^{i\theta_2} = \cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2) = e^{i(\theta_1 + \theta_2)}.$$

Démonstration – Suite

On en déduit le point 2 :

$$(e^{i\theta})^n = \underbrace{e^{i\theta} \times \cdots \times e^{i\theta}}_{n \text{ fois}} = e^{i(\theta + \cdots + \theta)} = e^{in\theta}.$$

Le deuxième point de la proposition précédente s'appelle formule de Moivre :

Proposition 9 (formule de Moivre)

Pour tout $\theta \in \mathbb{R}$, pour tout $n \in \mathbb{N}^*$:

$$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta).$$

Proposition 10 (formules d'Euler)

Pour tout $\theta \in \mathbb{R}$:

1.
$$\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
.

2.
$$\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$
.

Démonstration

On utilise les formules $\cos(-\theta) = \cos\theta$ et $\sin(-\theta) = -\sin\theta$:

$$\frac{e^{i\theta}+e^{-i\theta}}{2} = \frac{(\cos\theta+i\sin\theta)+(\cos(-\theta)+i\sin(-\theta))}{2} = \frac{\cos\theta+i\sin\theta+\cos\theta-i\sin\theta}{2} = \frac{2\cos\theta}{2} = \cos\theta$$
$$\frac{e^{i\theta}-e^{-i\theta}}{2i} = \frac{(\cos\theta+i\sin\theta)-(\cos(-\theta)+i\sin(-\theta))}{2} = \frac{\cos\theta+i\sin\theta-\cos\theta+i\sin\theta}{2i} = \frac{2i\sin\theta}{2i} = \sin\theta.$$

Exemple 8 (linéarisation)

On détermine une primitive de $x \mapsto \cos^3 x$.

Soit $x \in \mathbb{R}$. On utilise la formule $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ et la formule d'Euler pour « linéariser » :

$$\cos^{3} x = (\cos x)^{3} = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^{3} = \frac{\left(e^{ix}\right)^{3} + 3\left(e^{ix}\right)^{2} e^{-ix} + 3e^{ix} \left(e^{-ix}\right)^{2} + \left(e^{-ix}\right)^{3}}{8}$$

$$= \frac{e^{i3x} + 3e^{i2x} \times e^{-ix} + 3e^{ix} \times e^{-i2x} + e^{-i3x}}{8} = \frac{e^{i3x} + 3e^{ix} + 3e^{-ix} + e^{-3ix}}{8}$$

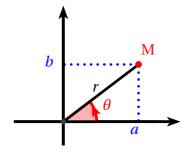
$$= \frac{1}{4} \left(\frac{e^{i3x} + e^{-i3x}}{2}\right) + \frac{3}{4} \left(\frac{e^{ix} + e^{-ix}}{2}\right) = \frac{1}{4} \cos(3x) + \frac{3}{4} \cos x$$

On en déduit qu'une primitive de $x \mapsto \cos^3 x$ est $x \mapsto \frac{1}{12} \sin(3x) + \frac{3}{4} \sin x$.

Théorème 1 (forme exponentielle)

Tout complexe non nul z s'écrit sous la forme $z = r e^{i\theta}$, où r est le module de z et θ son argument (unique « à $2k\pi$ près »).

L'écriture $z = re^{i\theta}$ s'appelle écriture sous forme exponentielle (ou trigonométrique).



$$z_M = a + ib = re^{i\theta}$$

Démonstration

On sait (avec les notations habituelles) que si z = a + ib, alors $\cos \theta = \frac{a}{r}$ et $\sin \theta = \frac{b}{r}$, donc

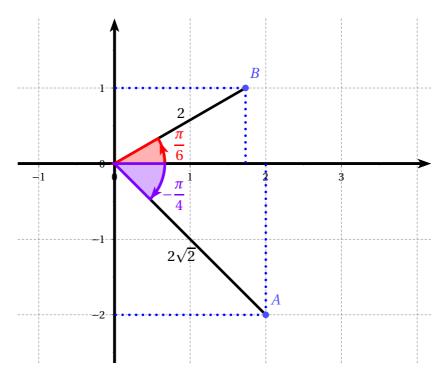
$$z = a + ib = r\left(\frac{a}{r} + i\frac{b}{r}\right) = r\left(\cos\theta + i\sin\theta\right) = re^{i\theta}.$$

On reprend les exemples 4 et 5 :

Exemples 9

1. $|\sqrt{3} + i| = 2$ et $arg(\sqrt{3} + i) = \frac{\pi}{6}$, donc $\sqrt{3} + i = 2e^{i\frac{\pi}{6}}$.

2. $|2-2i| = 2\sqrt{2}$ et arg $(2-2i) = -\frac{\pi}{4}$, donc $2-2i = 2\sqrt{2}e^{-i\frac{\pi}{4}}$.



Remarque.

L'unicité de l'écriture sous forme exponentielle (avec un argument défini « à $2k\pi$ près ») signifie que

$$(r_1 e^{i\theta_1} = r_2 e^{i\theta_2}) \iff (r_1 = r_2 \text{ et } \exists k \in \mathbb{Z}, \theta_1 = \theta_2 + 2k\pi).$$

L'écriture sous forme exponentielle permet de démontrer la propriété ci-dessous, qui elle-même est utile pour résoudre des problèmes de géométrie.

Proposition 11

Pour tous nombres complexes z, z' (et si les formules ont un sens, donc sans diviser par 0, ni prendre l'argument de 0) :

1.
$$|z \times z'| = |z| \times |z'|$$
.

3.
$$\arg(z \times z') = \arg(z) + \arg(z')$$

$$2. \quad \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}.$$

4.
$$\arg\left(\frac{z}{z'}\right) = \arg(z) - \arg(z')$$
.

Exemple 10

Soient $z_1 = \sqrt{2} + i\sqrt{6}$ et $z_2 = 2 + 2i$. Il est facile de calculer :

$$|z_1| = |z_2| = \sqrt{8}$$
 , $\arg(z_1) = \frac{\pi}{3}$, $\arg(z_2) = \frac{\pi}{4}$

On pose $Z = \frac{z_1}{z_2}$. On a alors

$$|Z| = \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} = \frac{\sqrt{8}}{\sqrt{8}} = 1,$$

$$\arg(Z) = \arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2) = \frac{\pi}{3} - \frac{\pi}{4} = \frac{4\pi}{12} - \frac{3\pi}{12} = \frac{\pi}{12}.$$

On en déduit

$$Z = 1 \cdot e^{i\frac{\pi}{12}} = \cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right). \tag{1}$$

D'un autre côté,

$$Z = \frac{z_1}{z_2} = \frac{\sqrt{2} + i\sqrt{6}}{2 + 2i} = \frac{\left(\sqrt{2} + i\sqrt{6}\right)(2 - 2i)}{(2 + 2i)(2 - 2i)} = \frac{2\sqrt{2} - 2\sqrt{2}i + 2\sqrt{6}i + 2\sqrt{6}}{2^2 + 2^2} = \frac{2\sqrt{2} + 2\sqrt{6}}{8} + \frac{-2\sqrt{2}i + 2\sqrt{6}i}{8},$$

soit

$$Z = \frac{\sqrt{6} + \sqrt{2}}{4} + i\frac{\sqrt{6} - \sqrt{2}}{4}.$$
 (2)

En comparant (1) et (2), on obtient :

$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4} \qquad , \qquad \sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}.$$

Pour conclure cette section, on donne une brève explication sur l'exponentielle d'un nombre complexe:

Si
$$z = a + ib$$
, on pose $e^z = e^a \times e^{ib}$.

Exemple 11
$$e^{1+i\pi} = e^1 \times e^{i\pi} = e \times (-1) = -e.$$

Proposition 12

Pour tous complexes z, z': $e^z \times e^{z'} = e^{z+z'}$.

On dit qu'une fonction $z: \mathbb{R} \to \mathbb{C}$, $t \mapsto z(t) = a(t) + ib(t)$ est dérivable si les fonctions a et b le sont. Dans ce cas, sa dérivée est la fonction $z': \mathbb{R} \to \mathbb{C}$, $t \mapsto z'(t) = a'(t) + ib'(t)$.

Proposition 13

Si $\varphi : \mathbb{R} \to \mathbb{C}$, $t \mapsto \varphi(t)$ est dérivable, alors $e^{\varphi} : \mathbb{R} \to \mathbb{C}$, $t \mapsto e^{\varphi(t)}$ l'est aussi, et sa dérivée est $t \mapsto$ $\varphi'(t)e^{\varphi(t)}$.

Exemple 12

La dérivée de $z: \mathbb{R} \to \mathbb{C}$, $t \mapsto e^{-2t+it^2}$ est $z': \mathbb{R} \to \mathbb{C}$, $t \mapsto (-2+2it)e^{-2t+it^2}$.

III. Équations dans C

On s'intéresse aux équations du 2^{nd} degré à coefficients dans \mathbb{R} d'abord, puis à coefficients dans \mathbb{C} . On énonce d'abord sans démonstration le théorème dans le cas où les coefficients sont réels :

Théorème 2 (2nd degré à coefficients réels)

Soient a, b, c trois nombres réels, avec $a \neq 0$. On pose $\Delta = b^2 - 4ac$ (discriminant). Les solutions dans \mathbb{C} de l'équation $az^2 + bz + c = 0$ sont :

$$-\operatorname{Si} \Delta > 0 : z_{1} = \frac{-b - \sqrt{\Delta}}{2a}, \qquad z_{2} = \frac{-b + \sqrt{\Delta}}{2a}.$$

$$-\operatorname{Si} \Delta = 0 : z_{0} = -\frac{b}{2a}.$$

$$-\operatorname{Si} \Delta < 0 : z_{1} = \frac{-b - i\sqrt{|\Delta|}}{2a}, \qquad z_{2} = \overline{z_{1}} = \frac{-b + i\sqrt{|\Delta|}}{2a}.$$

Remarque.

Il n'y a que dans le cas $\Delta < 0$ que le fait de travailler dans $\mathbb C$ offre de « nouvelles solutions » par rapport au cas réel.

On résout dans \mathbb{C} l'équation $-2z^2 + 6z - 5 = 0$.

- a = -2, b = 6, c = -5.
- $\Delta = b^2 4ac = 6^2 4 \times (-2) \times (-5) = -4$.
- Δ < 0, donc il y a deux solutions dans \mathbb{C} :

$$z_1 = \frac{-b - i\sqrt{|\Delta|}}{2a} = \frac{-6 - i\sqrt{|-4|}}{2 \times (-2)} = \frac{-6 - 2i}{-4} = \frac{3 + i}{2},$$

$$z_2 = \overline{z_1} = \frac{3 - i}{2}.$$

On se tourne à présent vers les équations à coefficients dans C.

Proposition 14

Si $a \in \mathbb{C} \setminus \{0\}$, l'équation $z^2 = a$ a deux solutions dans \mathbb{C} .

Démonstration

On écrit a sous forme exponentielle : $a=r\mathrm{e}^{\mathrm{i}\theta}$, avec r>0 et $\theta\in]-\pi;\pi]$. On remarque que $a=\left(\sqrt{r}\mathrm{e}^{\mathrm{i}\frac{\theta}{2}}\right)^2$, si bien que l'on a les équivalences :

$$z^{2} = a \iff z^{2} = \left(\sqrt{r}e^{i\frac{\theta}{2}}\right)^{2} \iff z^{2} - \left(\sqrt{r}e^{i\frac{\theta}{2}}\right)^{2} = 0 \iff \left(z + \sqrt{r}e^{i\frac{\theta}{2}}\right)\left(z - \sqrt{r}e^{i\frac{\theta}{2}}\right) = 0$$
$$\iff \left(z + \sqrt{r}e^{i\frac{\theta}{2}} = 0 \text{ ou } z - \sqrt{r}e^{i\frac{\theta}{2}} = 0\right) \iff \left(z = -\sqrt{r}e^{i\frac{\theta}{2}} \text{ ou } z = \sqrt{r}e^{i\frac{\theta}{2}}\right).$$

Il y a donc deux solutions, $-\sqrt{r}e^{i\frac{\theta}{2}}$ et $\sqrt{r}e^{i\frac{\theta}{2}}$, qui sont bien distinctes puisque opposées et non nulles.

Dans la proposition 3, les solutions de l'équation $z^2 = a$ sont appelées racines carrées de a.

Exemple 14

Les solutions de l'équation $z^2 = 9e^{i\frac{\pi}{2}}$ sont $z_1 = 3e^{i\frac{\pi}{4}}$ et $z_2 = -3e^{i\frac{\pi}{4}}$. Autrement dit : les racines carrées de $9e^{i\frac{\pi}{2}}$ sont $3e^{i\frac{\pi}{4}}$ et $-3e^{i\frac{\pi}{4}}$.

Attention

Le fait que l'on s'autorise à parler de **deux** racines carrées n'est valable que dans \mathbb{C} . Dans le cas réel, c'est un abus qui n'est pas autorisé.

Théorème 3 (2nd degré à coefficients complexes)

Soient a, b, c trois nombres complexes, avec $a \neq 0$. On pose $\Delta = b^2 - 4ac$ (discriminant). Les solutions dans \mathbb{C} de l'équation $az^2 + bz + c = 0$ sont :

$$z_1 = \frac{-b-\delta}{2a}$$
 , $z_2 = \frac{-b+\delta}{2a}$,

où δ est l'une des racines carrées de Δ .

Si $\Delta \neq 0$, ces solutions sont distinctes.

Exemple 15

On résout l'équation $z^2 - 3z + 3 - i = 0$. Le discriminant est

$$\Delta = b^2 - 4ac = (-3)^2 - 4 \times 1 \times (3 - i) = 9 - 12 + 4i = -3 + 4i.$$

On cherche une racine carrée de -3 + 4i sous la forme $\delta = a + ib$.

On a nécessairement :

$$\delta^{2} = \Delta$$

$$\delta^{2} = -3 + 4i$$

$$(a+ib)^{2} = -3 + 4i$$

$$a^{2} - b^{2} + 2abi = -3 + 4i$$

$$a^{2} - b^{2} = -3 \text{ et } 2ab = 4.$$

Mais on a aussi:

$$|\delta^{2}| = |\Delta|$$

$$|\delta|^{2} = |-3 + 4i|$$

$$|a + ib|^{2} = \sqrt{(-3)^{2} + 4^{2}}$$

$$\sqrt{a^{2} + b^{2}}^{2} = \sqrt{25}$$

$$a^{2} + b^{2} = 5.$$

On obtient le système :

$$\begin{cases} a^2 - b^2 = -3\\ a^2 + b^2 = 5\\ 2ab = 4 \end{cases}$$

On ajoute les deux 1^{res} lignes :

$$a^{2} - b^{2} + a^{2} + b^{2} = -3 + 5$$

 $2a^{2} = 2$
 $a^{2} = 1$.

Il y a donc deux possibilités : a = 1 ou a = -1.

Si a = 1, comme 2ab = 4, on obtient $b = \frac{4}{2a} = \frac{4}{2} = 2$; et si a = -1, on obtient $b = \frac{4}{2a} = \frac{4}{-2} = -2$.

Conclusion : il y a au plus deux racines carrées, 1+2i et -1-2i. Et comme la proposition 14 nous dit qu'il existe exactement deux racines carrées, il est certain que 1+2i et -1-2i sont **les** racines carrées de Δ (la synthèse est inutile).

On choisit l'une des deux racines carrées, par exemple $\delta=1+2i$. Les solutions de l'équation $z^2-3z+3-i=0$ sont donc

$$z_1 = \frac{-b - \delta}{2a} = \frac{-(-3) - (1+2i)}{2 \times 1} = \frac{3 - 1 - 2i}{2} = 1 - i,$$

$$z_2 = \frac{-b + \delta}{2a} = \frac{-(-3) + (1+2i)}{2 \times 1} = \frac{3 + 1 + 2i}{2} = 2 + i.$$

Pour terminer la leçon, on s'intéresse aux racines de l'unité.

Théorème 4 (racines de l'unité)

Soit n un entier supérieur ou égal à 1. Les solutions dans \mathbb{C} de l'équation $z^n = 1$ sont les $e^{i\frac{2k\pi}{n}}$, avec $k \in [0; n-1]$. Ces solutions sont appelées racines n-ièmes de 1, ou racines n-ièmes de l'unité.

Remarques.

- [a,b] désigne l'ensemble des entiers compris (au sens large) entre a et b. Donc [0;n-1] désigne les entiers 0, 1, ..., n-1.
- On note \mathbb{U}_n l'ensemble des racines n-ièmes de l'unité.

Démonstration

On raisonne par analyse synthèse:

Analyse. Soit z ∈ C vérifiant zⁿ = 1.
 z est non nul, car 0ⁿ ≠ 1, donc on peut l'écrire sous forme exponentielle : z = re^{iθ}, avec
 r > 0 et θ ∈ [0; 2π[(il est plus commode ici de chercher l'argument dans [0; 2π[plutôt que dans]-π; π]). On a donc

$$z^n = \left(re^{i\theta}\right)^n = r^n e^{in\theta}.$$

Or $z^n = 1 = 1 \cdot e^{i0}$, donc par unicité de l'écriture sous forme exponentielle,

$$r^n = 1$$
 et $\exists k \in \mathbb{Z}, n\theta = 0 + 2k\pi$.

On en déduit r = 1 et $\theta = \frac{2k\pi}{n}$.

De plus, la condition $0 \le \theta < 2\pi$ se réécrit $0 \le \frac{2k\pi}{n} < 2\pi$, d'où $0 \le k < n$. Finalement, comme k est un entier, $k \in [0; n-1]$.

Conclusion : si $z = re^{i\theta}$ vérifie $z^n = 1$, alors r = 1 et $\theta = \frac{2k\pi}{n}$, avec $k \in [0; n-1]$. Autrement dit :

$$z = e^{i\frac{2k\pi}{n}}$$
, avec $k \in [0; n-1]$.

• Synthèse. On vérifie que les $e^{i\frac{2k\pi}{n}}$ sont solutions, ce qui est immédiat puisque

$$\left(e^{i\frac{2k\pi}{n}}\right)^n = e^{i\cancel{n} \times \frac{2k\pi}{\cancel{n}}} = e^{i2k\pi} = 1.$$

1. Les racines 3-ièmes (ou cubiques) de l'unité

$$\begin{split} &e^{i\frac{0\pi}{3}} = e^{i0\pi} = 1, \\ &e^{i\frac{2\pi}{3}} = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + i\frac{\sqrt{3}}{2}, \\ &e^{i\frac{4\pi}{3}} = \cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right) = -\frac{1}{2} - i\frac{\sqrt{3}}{2}. \end{split}$$

Elles forment un triangle équilatéral.

2. Les racines 4-ièmes de l'unité sont :

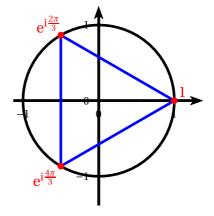
$$e^{i\frac{0\pi}{4}} = e^{i0\pi} = 1,$$

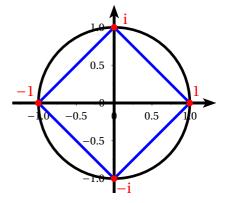
$$e^{i\frac{2\pi}{4}} = e^{i\frac{\pi}{2}} = i,$$

$$e^{i\frac{4\pi}{4}} = e^{i\pi} = -1,$$

$$e^{i\frac{6\pi}{4}} = e^{i\frac{3\pi}{2}} = -i$$

Elles forment un carré.





Exercices

Exercices 20 à 22

IV. Exercices

Exercice 1.

Écrire les nombres sous forme algébrique :

1.
$$(2+i)(3-2i)$$

5.
$$i^3$$

2.
$$-(1+i)+i(2-i)$$

1.
$$(2+i)(3-2i)$$
 5. i^3
2. $-(1+i)+i(2-i)$ 6. $\frac{1}{3-i\sqrt{2}}$
3. $(3-2i)^2$

3.
$$(3-2i)^2$$

$$3-i\sqrt{2}$$

4.
$$(2-i\sqrt{3})(2+i\sqrt{3})$$

7.
$$\frac{1+i}{2+i}$$

Exercice 2.

Résoudre les équations :

1
$$7 - 1 \pm i7$$

2.
$$z^2 = 4iz$$

2.
$$z^2 = 4iz$$
 3. $z^2 = -4$

Exercice 3.

Prouver que pour tout nombre complexe z:

1.
$$z + \overline{z} = 2\text{Re}(z)$$

2.
$$z - \overline{z} = 2 \text{Im}(z)$$

Exercice 4.

Soit *z* un nombre complexe, que l'on écrit z = a + ib. On pose

$$Z = z - 2\overline{z} + 2 + 3i$$
.

- 1. Écrire Z sous forme algébrique.
- 2. Déterminer les complexes z pour lesquels Z est imaginaire pur, puis les complexes z pour lesquels Z est réel.

Exercice 5 $(\hat{\mathbf{m}})$.

Déterminer le module et l'argument des nombres complexes suivants. Illustrer par une (ou des) figure(s).

1
$$1 - i\sqrt{3}$$

2.
$$-1+$$

Exercice 6 $(\underline{\hat{\mathbf{m}}})$.

Soient A, B, C, D les points d'affixes $z_A = -2i$, $z_B = 7 + 5i$, $z_C = 2 + 3i$, $z_D = 5$.

- 1. Prouver que $z_{\overrightarrow{AC}} = z_{\overrightarrow{DB}}$. Que peut-on en déduire pour le quadrilatère ACBD et pour la longueur de ses côtés opposés?
- 2. Calculer les longueurs AC et CB à l'aide du module. Que peut-on en déduire pour le quadrilatère ACBD?

Exercice 7.

Déterminer l'ensemble Δ des points M du plan d'affixe z telle que

$$|z-1| = |z-i|.$$

Exercice 8.

Soit $\theta \in \mathbb{R}$ et soient M_1 , M_2 , M_3 , M_4 les points d'af-

$$e^{i\theta}$$
, $-e^{i\theta}$, $e^{-i\theta}$, $e^{i(\theta+\frac{\pi}{2})}$.

Dessiner un repère orthonormé, choisir librement θ et placer les points M_1 , M_2 , M_3 , M_4 .

Exercice 9 $(\hat{\mathbf{m}})$.

En utilisant les formules d'Euler, démontrer 1. En utilisant les formule que pour tout réel x:

a. $\cos^2 x = \frac{1 + \cos(2x)}{2}$.

b. $\sin^2 x = \frac{1 - \cos(2x)}{2}$.

2. Calculer les intégrales:

a. $\int_0^{\frac{\pi}{2}} \cos^2 x dx$.

b. $\int_0^{\frac{\pi}{2}} \sin^2 x dx$.

a.
$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$

b.
$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$

Exercice 10 (
$$\hat{\mathbf{m}}$$
).

1. Démontrer que pour tout réel x :
$$\sin^3 x = -\frac{1}{4}\sin(3x) + \frac{3}{4}\sin x.$$
2. Calculer $\int_0^{\pi} \sin^3 x dx$.

Exercice 11 (6).

Soient p, q deux réels.

1. Prouver que

$$e^{ip} + e^{iq} = e^{i\left(\frac{p+q}{2}\right)} \left(e^{i\left(\frac{p-q}{2}\right)} + e^{-i\left(\frac{p-q}{2}\right)} \right).$$

2. En utilisant la partie réelle, démontrer la formule de factorisation

$$\cos p + \cos q = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right).$$

3. Démontrer également que

$$\sin p + \sin q = \cdots$$

Exercice 12 (6).

Prouver que pour tout $\theta \in \mathbb{R}$,

$$\left|1 - e^{i\theta}\right| = 2\left|\sin\left(\frac{\theta}{2}\right)\right|.$$

Exercice 13 $(\hat{\mathbf{m}})$.

Relier deux à deux les nombres égaux. Illustrer par une (ou des) figure(s).

- 2 + 2i
 $2e^{i0}$
 $3e^{-i\frac{\pi}{2}}$
 $3e^{-i\frac{\pi}{4}}$
 $2\sqrt{2}e^{i\frac{\pi}{4}}$

En utilisant la forme exponentielle, démontrer la propriété du cours : $\forall z \in \mathbb{C}$, $\forall z' \in \mathbb{C}$, 1. $|z \times z'| = |z| \times |z'|$.

2. $\arg(z \times z') = \arg(z) + \arg(z')$.

- Écrire sous forme exponentielle les nombres :
 a. z₁ = √2 + i√2
 b. z₂ = √3 i
 c. Z = z₁ × z₂
 Calculer Z⁶ sous forme algébrique.

Exercice 16.

- 1. Placer dans le plan complexe les points M_1 , M_2 d'affixes respectives $z_1 = 2 + i$, $z_2 = 1 3i$.
- **2.** On considère la transformation r du plan complexe qui, à tout point M d'affixe z, associe le point M' d'affixe $z' = e^{i\frac{\pi}{2}} \times z$.
 - **a.** Déterminer les images de M_1 et M_2 par r.
- 3. On généralise :

Exercice 17 (11).

Résoudre dans \mathbb{C} les équations :

1.
$$z^2 - 2z + 5 = 0$$

2.
$$z^2 - 4z + 3 = 0$$

3.
$$z^2 + z + 1 = 0$$

Exercice 18 (11).

Déterminer les racines carrées dans $\mathbb C$ des nombres complexes :

- 1. $4e^{i\frac{2\pi}{3}}$
- 2. $5e^{-i\frac{\pi}{4}}$
- 3. -9
- 4. 8 6i

Exercice 19 (**1**).

Résoudre dans $\mathbb C$ les équations :

1.
$$z^2 + 3z + 1 - 3i = 0$$

2.
$$z^2 - 4iz - 1 - 4i = 0$$

Exercice 20 (11).

1. Résoudre dans ℂ l'équation

$$z^6 = 1$$
.

Représenter l'ensemble des solutions dans le plan complexe.

2. Résoudre dans ℂ l'équation

$$z^8 = 1$$
.

Représenter l'ensemble des solutions dans le plan complexe.

Exercice 21 (8).

On considère l'équation

(*E*)
$$z^3 = -1$$
.

Pour résoudre (E), on va faire un raisonnement par analyse-synthèse.

1. Analyse. Soit $z \in \mathbb{C}$. On suppose que z est une solution de (E) et on pose $Z = z \times e^{i\frac{\pi}{3}}$.

Prouver que $Z^3 = 1$. Que peut-on en déduire pour Z, puis pour z?

2. Synthèse. Vérifier que les *z* obtenus dans la question précédente sont bien solutions et conclure.

Exercice 22 (**6**).

On considère l'équation

$$(E) z^4 = -i$$

Pour résoudre (*E*), on va faire un raisonnement par analyse-synthèse.

1. Analyse. Soit $z \in \mathbb{C}$. On suppose que z est une solution de (E) et on pose $Z = z \times e^{i\frac{\pi}{8}}$.

Prouver que $Z^4 = 1$. Que peut-on en déduire pour Z, puis pour z?

2. Synthèse. Vérifier que les *z* obtenus dans la question précédente sont bien solutions et conclure.